鎵也被應用到太陽能電池的制造中,如砷化鎵三五族太陽能電池,該電池具有良好的耐熱、耐輻射等特性,其光電轉換率非常高。氮化鎵最初因為生產、使用成本都非常高,常常被應用在航天和軍工領域。但近幾年隨著科技的發展,金屬鎵太陽能電池的生產和使用成本都在降低,搭配上聚光光學組件從而使其應用領域開始擴大,并且正在以較快的速度普及。CIGS薄膜太陽能電池是第三代太陽能電池,具有生產、安裝、使用成本低,光電轉換率高的優勢,因而在眾多太陽能電池產品中成為發展最快的一族。高純氮化鎵雖然世界上已投產或在建的CIGS工廠已超過40多家,但金屬鎵在CIGS的原材料中所占比重僅為5%—10%。隨著CIGS生產規模的擴大,該行業對金屬鎵的需求會有明顯增長。
鋁合金中添加微量鈧可以大幅提升鋁合金的強度、塑韌性、耐高溫性能、耐腐蝕性能、焊接性能和抗中子輻照損傷性能。烏蘭察布氮化鎵已作為結構材料用于航天、航空、核反應堆等領域,在艦船、高鐵列車、輕型汽車等領域也有著廣泛的應用前景。氮化鎵國外其他一些國家已在大型民用飛機的承重部件用鋁鈧合金材料代替其他材料,以提高飛機的綜合性能。
目前,以碳化硅(SiC)和氮化鎵(GaN)為代表的第三代化合物半導體受到的關注度越來越高,它們在未來的大功率、高溫、高壓應用場合將發揮傳統的硅器件無法實現的作用。氮化鎵特別是在未來三大新興應用領域(汽車、5G和物聯網)之一的汽車方面,會有非常廣闊的發展前景。氧化鎵是一種寬禁帶半導體,禁帶寬度Eg=4.9eV,其導電性能和發光特性良好,因此,其在光電子器件方面有廣闊的應用前景,被用作于Ga基半導體材料的絕緣層,以及紫外線濾光片。氮化鎵廠家這些是氧化鎵的傳統應用領域,而其在未來的功率、特別是大功率應用場景才是更值得期待的。
對于蒸發鍍膜:一般是加熱靶材使表面組分以原子團或離子形式被蒸發出來,并且沉降在基片表面,通過成膜過程(散點-島狀結構-迷走結構-層狀生長)形成薄膜。氮化鎵厚度均勻性主要取決于:1、基片材料與靶材的晶格匹配程度;2、基片表面溫度;3、蒸發功率,速率;4、真空度;5、鍍膜時間,厚度大小。組分均勻性:蒸發鍍膜組分均勻性不是很容易保證,具體可以調控的因素同上,但是由于原理所限,對于非單組分鍍膜,蒸發鍍膜的組分均勻性不好。烏蘭察布氮化鎵晶向均勻性:1、晶格匹配度;2、基片溫度;3、蒸發速率