薄膜均勻性的概念:1.厚度上的均勻性,也可以理解為粗糙度,在光學薄膜的尺度上看(也就是1/10波長作為單位,約為100A)。求購氧化銦粉末真空鍍膜的均勻性已經相當好,可以輕松將粗糙度控制在可見光波長的1/10范圍內,也就是說對于薄膜的光學性來說,真空鍍膜沒有任何障礙。氧化銦但是如果是指原子層尺度上的均勻度,也就是說要實現10A甚至1A的表面平整,是現在真空鍍膜中主要的技術含量與技術瓶頸所在,具體控制因素下面會根據不同鍍膜給出詳細解釋。
在原子能工業中,鎵可以作為熱傳導物質,將反應堆中的熱量傳導出來。此外,鎵還可以吸收中子,從而達到控制中子數目和反應速度的效果。氧化銦碘化鎵應用到高壓水銀燈鎵還可以用來制造陰極蒸汽燈。將碘化鎵加入到高壓水銀燈中,可以增大水銀燈的輻射強度。由于鎵具有“熱縮冷脹”性質,所以具有較好的鑄造性,可以用來制造鉛字合金,使字體清晰。松原氧化銦鎵蒸汽壓很低,可以在真空裝置中做密封液。
SiC和GaN相比,β-Ga2O3有望以低成本制造出高耐壓且低損失的功率半導體元件,因而引起了極大關注。氧化銦我們一直在致力于利用氧化鎵(Ga2O3)的功率半導體元件(以下簡稱功率元件)的研發。Ga2O3與作為新一代功率半導體材料推進開發的SiC和GaN相比,有望以低成本制造出高耐壓且低損失的功率元件。松原氧化銦粉末其原因在于材料特性出色,比如帶隙比SiC及GaN大,而且還可利用能夠高品質且低成本制造單結晶的“溶液生長法”。
氧化鍺,具有半導體性質。對固體物理和固體電子學的發展超過重要作用。氧化銦鍺的熔密度5.32克/厘米3,鍺可能性劃歸稀散金屬,鍺化學性質穩定,常溫下不與空氣或水蒸汽作用,但在600~700℃時,很快生成二氧化鍺。與鹽酸、稀硫酸不起作用。濃硫酸在加熱時,鍺會緩慢溶解。在硝酸、王水中,鍺易溶解。堿溶液與鍺的作用很弱,但熔融的堿在空氣中,能使鍺迅速溶解。松原氧化銦鍺與碳不起作用,所以在石墨坩堝中熔化,不會被碳所污染。鍺有著良好的半導體性質,如電子遷移率、空穴遷移率等等。